CENA Empirical Linear Site Amp Updates

Grace Parker, Jonathan Stewart August 23, 2016

Outline

- Gulf Coast GMM adjustment factors
- Updated V_{S30}
- Updated Results, with influence of:
 - Gulf Coast
 - PIE
- Glaciated vs. Non-glaciated Profiles

NGA-East GC Adjustment

- Gulf Coast adjustments
 - For when source, path and site are all in GC
 - Still excluding recordings where path crosses into/ out of GC
- Two Models
 - PEER Empirical
 - DASG Simulation Based

PEER Empirical

 Based on residuals between NGA-East GMMs and Gulf Coast data

EQ Name	EQ I.D.	M	Z _{HYP} (km)	PIE	R _{RUP} (km)	V _{S30} (m/sec)
Blytheville 2003-04-30	22	3.6	23	No	60.62 - 255.93	235.2 - 1288
Bardwell 2003-06-06	23	4.05	1.25	No	42.58 - 382.1	235.2 - 1288
MilliganRdg 2005-02-10	31	4.14	15	No	75.91 - 603.34	235.2 - 1288
ShadyGrove 2005-05-01	33*	4.25	8	No	20.68 - 614.84	185 - 1288
Miston 2005-06-02	34*	4.01	15	No	15.49 - 683.17	185 - 1288
Ridgely 2006-09-07	38*	3.35	7	No	19.8 306.21	185 - 1288
Marston 2006-10-18	41*	3.41	8.2	No	12.79 - 313.1	210 - 1288
Whiting 2010-03-02	58*	3.4	5	No	13.64 - 518.85	160 - 1288
Comal 2011-10-20	92*	4.71	4	Yes	32.68 - 1216.91	217.6 - 1288

(PEER Report 2015/08)

Gulf Coast Data

Trends in Total Residual

- 1. Slope ~ 0 for $R_{RUP} \leq$ 100 km.
- 2. Beyond 100 km, slope is linear and negative

(PEER Report 2015/08)

PEER Model

$$\frac{PSA_{GC}}{PSA_{MC}}(f) = \begin{cases} c_0 & R_{RUP} < 100 km \\ c_0 + c'_7 (R_{RUP} - 100) & R_{RUP} \ge 100 km \end{cases}$$

Coefficients set by mixed-effects regression

(PEER Report 2015/08)

DASG15 Model

- PS simulation with simulation inputs (κ, Q₀, stress drop) inverted for using GC region data
- Simulations used to update DASG NGA-East GMM
- Ratio of predicted GMIMs from the two GMMs is the adjustment factor
- Given as a table

PSA Ratio Model

(ГЕЕК КЕРОП 2015/08)

Comparisons of PEER and DASG Adjustments

(PEER Report 2015/08)

Update to Site Amp Model Data

- Average of PEER and DASG adjustments taken
- Applied to records with source and site in GC
- Records with either source only or site only in GC excluded

Events and Records

Updated V_{S30}

- Previously 445 flagged stations had been updated
- Thanks to Caio Vilar now all code 3, 4, and 5 stations have updated V_{S30} values

Model Before Updates

Updated Results

Model Before Updates

Updated Results

Updated Residuals

Results – Gulf Coast

Results – Gulf Coast

Results- PIE

Results- PIE

Results- PIE

Glaciated Vs. Non-Glaciated Profiles

 Grouped profiles according to glaciation and surface geology (using proxy groups)

Non-Glaciated

Glaciated

Future Work

- Finalize glaciated model for comparison
- Look at influence of F_{peak}

References

- Harmon, J.A., Y.M.A. Hashash, J.P. Stewart, E.M. Rathje, K.W. Campbell, W. Silva, G.A. Parker, and B. Xu (2016). A Site Amplification Model for Central and Eastern North America from Linear Elastic and Nonlinear Site-Response Simulations [abstract]. In: Proceedings of the Seismological Society of America Annual Meeting; 2016 Apr 20-22; Reno NV. California (CA): SSA; Abstract 16-537
- Hassani, B., and Atkinson, G. M. (2015). Referenced empirical ground-motion model for eastern North America. *Seismological Research Letters*, **86**(2A), 477-491.
- Reed, J.C., and C.A. Bush (2005). Generalized geologic map of the United States, Puerto Rico, and the U.S. Virgin Islands. USGS National Atlas Small-Scale Collection. Available online at: http://pubs.usgs.gov/atlas/geologic/.
- PEER (2015).NGA-East: Adjustments to Median Ground-Motion Models for Central and Eastern North America. PEER report 2015/08.
- Seyhan, E., and Stewart, J. P. (2014). Semi-empirical nonlinear site amplification from NGA-West2 data and simulations. *Earthquake Spectra*, **30**(3), 1241-1256.
- Yenier, E, and G.M. Atkinson (2015). Regionally adjustable generic ground-motion prediction equation based on equivalent point-source simulations: Application to central and eastern North America. *Bulletin of the Seismological Society of America*, **105**(4), 1989-2009.

Amplification Model Comparisons T = 0.2s

Amplification Model Comparisons T = 0.2s

